Abbreviated Identification of Bacteria and Yeast

NCCLS Guideline M 35 A Mary K. York, Ph.D. ABMM

References Prove Value

- → Doern, G., R. Vautour, M. Gaudet, and B. Levy. 1994. Clinical impact of rapid *in vitro* susceptibility testing and bacterial identification.
 - MIC 9.6 h from colonies vs. 25.9 h- showed less mortality, length of stay and orders of laboratory tests
- → Barenfanger, J., C. Drake, and G. Kacich. 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing.
 - evaluated evening vs. next day 5 h difference length of stay and cost was significantly less

Pros and Cons of Rapid Methods

→ Pros

- Less work than standard methods
- Results are out faster
- Less cost

→ Cons

- Requires technical expertise for accuracy
- Cannot be applied to all cases
- May disrupt workflow

Criteria Used by Committee for Rapid Tests

- → Only for specific organisms
- → Errors must not have a negative impact on patient care
- → Accuracy must be > 95%
- → Emphasis on organisms that have unique reactions
- → Results are not presumptive if all criteria metcpt 4 code issue

Factors to Keep in Mind

- → Not for direct specimens
- → All conditions must be met
- → Keep isolate for future testing if needed

Technologist must....

- → Begin with pure colony
- → Recognize what it could be from typical colony morphology
- → Perform rapid tests accurately and read them correctly
- → Often do Gram stain

Supervisor must.....

- → Validate the competency of the staff doing tests
- → Check to see that <u>all</u> tests are done
- → Be sure that procedures are written and QC is done at appropriate intervals

CLIA '88

- → All quality control activities must be documented.
- → The laboratory must check positive and negative reactivity with control organisms
- → Each new lot/shipment of reagents, commercial tests, or biochemical test media prior to being used on patient specimens.

CLIA '88

→ and

- (1) Each day of use for catalase, coagulase, beta-lactamase, and oxidase reagents and DNA probes;
- (2) Each week of use for Gram stain, bacitracin, optochin, ONPG, X and V discs or strips; and
 - (3) Each month of use for antisera...

Does not address ID disks, rapid indole, Staph Latex reagents, etc.....

CLIA 2003

- → All quality control activities must be documented
 - The laboratory must check positive and negative reactivity with control organisms
 - (1) Each day of use for DNA probes and betalactamase (ex. cefinase);
 - (2) Each week of use for Gram stain and AFB stains; and
 - (3) Every 6 months of use for antisera...
 - (4) Each new lot/shipment of reagents, commercial tests, or biochemical test media <u>prior to being used</u> <u>on patient specimens</u>.

Organisms covered by NCCLS

Gram Negative Bacilli

- → Escherichia coli
- → Haemophilus influenza
- → Moraxella catarrhalis
- → Proteus mirabilis/penneri
- → Proteus vulgaris
- → Pseudomonas aeruginosa

Gram Positive Cocci

- → Enterococcus species
- → Staphylococcus aureus
- → Streptococcus agalactiae
- → Streptococcus pneumoniae
- → Streptococcus pyogenes

Yeast

- → Candida albicans
- → Candida glabrata
- → Cryptococcus neoformans

Organisms covered by NCCLS

Anaerobic Gram Negative Bacilli

- → Bacteroides fragilis group
- → Bacteroides urealyticus
- → Bilophila wadsworthii
- → Prevotella species
- Prevotella intermedia
- → Porphyromonas species
- → Fusobacterium nucleatum

Anaerobic Gram Negative Cocci

→ Veillonella species

Anaerobic Gram Positive Bacilli

- → Clostridium difficile
- → Clostridium perfringens
- → Clostridium septicum
- → Clostridium sordellii
- → Clostridium tetani
- → Propionibacterium acnes

Anaerobic Gram Positive Cocci

→ Peptostreptococcus species

Start with indole and oxidase

Indole Oxidase

Cinnamaldehyde reagent

Not as immediate
Disappears faster
Is the reagent required for anaerobic spot indole

Identification of E.coli

- •Indole +
- •Oxidase -
- •Gram-negative rod
- •Beta-hemolytic

= E. coli

Limitation: some *Proteus* and *Morganella* and all *Edwardsiella* are hemolytic. These species are lactosenegative.

What if it is not hemolytic?

Lactose + and

PYR negative = E. coli

PYR reactions of GNR

Genus Indole Lactose PYR

Citrobacter
E. coli
Klebsiella
Yersinia
Enterobacter
Serratia

Mercenelle

Serratia
Morganella
Proteus
Providencia
Edwardsiella
(beta hemolytic)
Shigella
Salmonella

Some + V Some + + + +
Some + - + +
- + - - +
Some + - - - - - - - - - - - - - -

+ + Some + -

-

What if it is not lactose-positive?

CLSI Algorithm for E. coli: Indole +; Oxidase –

Algorithm for some labs... Indole + and oxidase -

Limitations

- → Beta hemolytic, lactose-negative should be limited to UTI and geographic areas that lack hemolytic *Morganella* and *Proteus*.
- → Take colony from BAP that corresponds to MAC or EMB
- → Do not use MUG for GI specimens, except to identify *E. coli* O157.

Accuracy of 1064 Indole + oxidase- strains = 99.7%

- \rightarrow 294 were hemolytic and *E. coli*.
- → 628 were lactose positive and PYR negative and E. coli.
- \rightarrow 65 were MUG positive and *E. coli*.
- → 13 were MUG negative and needed kit to identify as *E. coli*.
- \rightarrow 64 were not *E. coli* but 3 were called *E. coli*

Cost savings

- → \$3100 in reagents 987 kits omitted
- → 70 hours of technologist time

York, M.K., E.J. Baron, M. Weinstein, R Thomson, and J.E. Clarridge. 2000. A Multi-Laboratory validation of rapid spot tests for identification of *Escherichia coli*. J Clin Microbiol 38: 3394-3398.

Spreading Proteus

MacConkey

BAP

Proteus identification= Spreading colony plus....

- Indole-positive:
- → Proteus vulgaris
- Indole-negative:
- → Ampicillin-susceptible: *Proteus mirabilis*
- → Ampicillin-resistant
- → Maltose-negative or Ornithine-positive: *P. mirabilis*
- → Maltose-positive or Ornithine-negative: *P. penneri*

Proteus species

	Spreading on BAP	Indole	Ampicillin S	ODC	Maltose ferment
P. mirabilis	96	2	95	99	0
P. vulgaris	64	98	0	0	97
P. penneri	65-90	0	0	0	100

Rapid maltose

Positive

Rapid Urea

- → Make suspension of organism
- → Add disk
- → Incubate 2 h
- → Read urea
- → Add HCl -not nec.
- → Add FeCl₃

Other Rapid Urea Positive species

- → Brucella
- → Helicobacter pylori
- → Bordetella species
- → Some *Corynebacterium*

- → Grows on BAP
- → Coccobacillus
- → Catalase -positive
- → Oxidase positive
- → Urease positive
- → This is *Brucella* unless proven otherwise
- → Work in a BSC
- → Confirm with serology
- → Reportable disease
- → Bioterrorism

Brucella Diagnosis

- → Symptoms are non-specific
- → Onset is insidious
- → Risks are eating raw dairy products or working in a microbiology laboratory
- → Without diagnosis there is no appropriate treatment:

Doxycycline plus rifampin

Pseudomonas aeruginosa

- •Oxidase +
- •Indole -
- Metalic or mucoid
- •Fruity odor

CF patients: Confirm with colistin or poly B disk

Identification of Haemophilus influenzae

- → Small gram-negative coccobacilli
- → Growth of <u>large</u>
 colonies only on
 CHOC in 24 h or
 around staphylococci
- **→** And.....

ALA test negative - 2 h 35°C read under UV light

- 1. Francisella grows on CHOC in 48 h but is small colony
- 2. Cannot differentiate
 H. influenzae from H.
 haemolyticus; the latter

is hemolytic on horse or rabbit blood agar.

- •You can either make the reagent or buy it
- •Recipe in NCCLS
 M35-A and handout

Haemophilus species

	SATELLITE V factor	ALA	LACT	UREA	IND	ODC	CAT
H. influenzae	+	-	-	V	V	V	+
H. haemolyticus	+	-	-	+	V	-	+ 1
H. parahaemolyticus	+	+	-	+	-	-	+
H. parainfluenzae	+	+	-	\mathbf{V}	V	V	V
H. paraphrophilus	+	+	+	_	-	-	-
H. ducreyi	-	-	-	-	-	_	_

Horse Blood Agar

Case Study

- 36 y/o male with HIV
- Camped in Yosemite
- Non-healing, erythematous 3 mm cyst on neck
- ♦ FNA aspirate and biopsy
- Gram stain negative
- GNR grew on chocolate in 3 days
- Patient treated with ciprofloxacin & did well


```
Day 3 - GNR growing on Choc
   catalase +; urease -; oxidase -
   Vitek NHI = 99% Actinobacillus
   actinomycetemcomitans
Day 4 - Satellite-negative
  ALA neg; motility -; NH 2520 No ID
Day 5 - Tech sets up MIC - no growth day 7
Day 10 - KB set up
Day 12 - KB penicillin R
Day 40 - MDL reports ID-done by FA
```


Francisella tularensis - BSL III

Francisella tularensis

- If growth takes longer than 24 h, may be *Francisella* which will not satellite,
 - ALA-negative.
 - Grows on CHOC but not on BAP.
 - Oxidase-negative; catalase weak.
 - No kit will identify
 - Do cefinase-result is positive.
 - Send to health department if cefinase-positive
- Rabbit fever, tick, mosquito & fly bites
- Bioterrorism

Moraxella catarrhalis

Confirmatory Identification of *M. catarrhalis*

- → Gram negative diplococci
- → Grows on BAP
- → Oxidase-positive
- → Butyrate (or indoxyl acetate)positive in 5 min

Actually all *Moraxella* are butyrate + but the others are coccobacilli

- Inoculate plate and put Pen disk on it
- Perform Gram stain from around the disk
- Do on subs of positive blood cultures polymyxin B and vancomycin too!

- → May use indoxyl acetate
- → Same method and color
- → Can be used for identification of Campylobacter jejuni (C. lari is negative)

Campylobacter jejuni

- Requires microaerobic environment
- Oxidase positive
- Catalase positive
- Curved rod
 - Hippurate positive
 - If hippurate negative; indoxyl acetate -positive and cefazolin R identifies
 - Nal Acid or cipro R & cefazolin R & indoxyl acetate -negative is
 C. lari

Rapid Hippurate

- → Inoculate broth
- → Incubate 2 h
- → Add ninhydrin
- → Observe blue color

In Summary for Gram negative rods

- → If growing on MAC, do
 - Indole
 - Oxidase
 - Kit if not E. coli, Proteus or Pseudomonas
- → If not growing on MAC, do
 - Catalase
 - Oxidase
 - Gram stain
 - Generally kits are not helpful here

Staphylococcus aureus

Latex agglutination

Identification of S. aureus

- → Grows as opaque, white colony
- → May be beta hemolytic
- → Catalase-positive
- → Gram-positive cocci in clusters
- → Slide, tube or agglutination positive

Rapid tube coagulase is 4 h at 35°C; then must go to 25°C for 20 h more if negative

Limitations

- → Rapid Tube Coag is 4 h at 35°C; then must go to 25°C for 20 h more if negative
- → S. *lugdunensis* and S. *schleiferi* can be slide and Latex positive
- → S. saprophyticus (and rare others) can be Latex positive
- → MRSA can be Latex negative

Algorithm for Latex testing for Staphylococci

Hemolysis is defined as present in 18 h - not 48 h; not under colony

*Do PYR if tube coagulase negative to rule out S. lugdunensis⁵⁶

Case study

- → Positive blood culture from patient with endocarditis
- → Slide or Latex coagulase positive
- → Tube coagulase-negative
- → PYR positive
- → Ornithine positive

Staphylococcus lugdunensis

- → Identification important to treatment
- → CLSI now uses S. aureus methicillin breakpoints for this species

Use PBP2a on CoNS with MICs of less than 4 µg/ml

the state of the s							
	Hemoly sis 18 h	Slide Coag	Latex agglu	Tube Coag	ODC	Poly B	PYR
S. aureus	+	V	+	+	-	R	-?
S. intermedius	V	V	V	+	-	S	+
(dogs)							
S. lugdunensis	-	+	+		+	R	+
S. schleiferi	_	+	+		-	S	+
S. saprophyticus*	-	-	V	_	-	S	-
S. epidermidis	-	-	-	-	V	R	-
most others	-	-	-	-	-	S	V

^{*}Novobiocin resistant.

Streptococcus pneumoniae

Quellung reaction

S. pneumoniae Identification

- → Colonies small, transparent- may be mucoid
- → Gram positive cocci lancet shaped in pairs
- → Catalase negative
- → Bile soluble

Limitation: Not all are bile soluble but all bile soluble are S. pneumoniae

Enterococcus Identification

- Large (1mm) non hemolytic colony
- Gram-positive cocci pairs and chains
- Catalase-negative
- PYR +

Case Study

- → Positive blood culture post-partum
- → PYR positive
- → Laboratory called it Enterococcus
- → Gram stain alerted to misidentification
- → Called contaminant: patient discharged.

Other PYR-positive Cocci

Aerococcus - tetrads

Vagococcus - motile

Vancomycin resistant is always

Enterococcus if PYR +

Cannot separate Enterococcus from Lactococcus

Phenotypic characteristics^a

Genus	Gram	CAT	LAP	NaCl	10°	C 45	5°C Colony	Hemolysis on BAP
								UII DAI
Enterococccus	ch	-	+	+	+	+	Large	$\alpha/\gamma/\beta$
Lactococcus	ch	-	+	V	+	_	Large	α/γ
Vagococcus (motile)	ch	-	+	+	+	-	Large	α/γ
Abiotrophia/Granulicatella	ch	_	+	-	-	v	Satellite	α/γ
Globicatella	ch	_	-	+	-	-	Small	α
Dolosicoccus	ch	_	_	_	-	-	Small	α
Aerococcus virdans	cl/t	-,W	-		-	-	Large	
Helcococcus kunzii	cl/t	_	-	V	-	_	Small	γ
Gemella	cl/t/ch	_	V	_	-	-	Tiny, 48 h to	α/γ
							grow	
Facklamia	cl/ch	_	+	+	-	-	Small	γ
Alloiococcus	cl/t	w,+	+	+	-	-	Tiny, 72 h to	γ
							grow	
Ignavigranum	cl/ch	_	+	+	-	-	Satellite (v) or small	γ
Rothia mucilaginosa ^b	cl	-,w,+	+	-			Sticky	γ
Dolosigranulum	cl/t	_	+	+	_	-	Small	γ

Identification of S. pyogenes

- → Colonies: dry, peaked >0.5 mm in diameter
- → Beta hemolytic
- → Catalase-negative
- → Gram-positive cocci in pairs and chains
- → PYR-positive or positive particle agglutination

Enterococcus can be beta

Enterococcus look different

- Enterococcus

 colonies are larger

 with less defined ß

 zone
- Do rapid esculin if there is a concern
- Enterococci are esculin-positive

PYR - Positive Algorithm

Beta Streptococci

Group B

- → Catalase-negative
- → Gram-positive cocci in pairs and chains
- → Characteristic colony

Group G

and CAMP test positive

...or hippurate positive

Limitation: Do not do hippurate on nonhemolytic colonies-Other Streptococcus can be positive

Candida albicans

Candida albicans

Only use 100% fetal or newborn calf serum-2 h 35°C

Candida albicans = Positive for both enzymes

Candida albicans Limitations

- → Always start with a wet mount to confirm presence of yeast
- → Cannot separate from *C. dubliniensis* which does not grow at 42°C-Not usually necessary
- → C. tropicalis can form fringe (not feet) or get projections in germ tube after 3 h.

Candida glabrata

- → Colonies smaller on BAP than other yeast
- → Yeast in wet mount are tiny with no hyphae
- → Colonies are larger on EMB than BAP at 24 h or....

Represents 20% of yeast in urine

Growth in 24 h at 35°C

Candida glabrata

- → Colonies smaller on BAP than other yeast
- → Yeast in wet mount are tiny
- → Positive (yellow)
 RAT test in 3 h at
 42°C

Cryptococcus neoformans

- → Large mucoid colonies
- → No pigment
- → Capsule by India Ink or no pseudohyphae
- → Round cells
- → And positive caffeic acid test

Cryptococcus neoformans

Overnight

- Rapid caffeic acid
- Use media
 without dextrose
- 30°C 4 h is best

L-DOPA disk works better

Rapid testing can make a difference

Thank you